The COVID-19 pandemic has reached over 100 million worldwide. Due to the multi-targeted nature of the virus, it is clear that drugs providing anti-COVID-19 effects need to be developed at an accelerated rate, and a combinatorial approach may stand to…
The COVID-19 pandemic has reached over 100 million worldwide. Due to the multi-targeted nature of the virus, it is clear that drugs providing anti-COVID-19 effects need to be developed at an accelerated rate, and a combinatorial approach may stand to…
Amorphous solid dispersions (ASDs) have emerged as widespread formulations for drug delivery of poorly soluble active pharmaceutical ingredients (APIs). Predicting the API solubility with various carriers in the API–carrier mixture and the principal API–carrier non-bonding interactions are critical factors for…
Amorphous solid dispersions (ASDs) have emerged as widespread formulations for drug delivery of poorly soluble active pharmaceutical ingredients (APIs). Predicting the API solubility with various carriers in the API–carrier mixture and the principal API–carrier non-bonding interactions are critical factors for…
Transdermal drug delivery is gaining popularity as an alternative to traditional routes of administration. It can increase patient compliance because of its painless and noninvasive nature, aid compounds in bypassing presystemic metabolic effects, and reduce the likelihood of adverse effects through decreased systemic exposure. In silico physiological modeling is critical to predicting dermal exposure for a therapeutic and assessing the impact of different formulations on transdermal disposition.
Transdermal drug delivery is gaining popularity as an alternative to traditional routes of administration. It can increase patient compliance because of its painless and noninvasive nature, aid compounds in bypassing presystemic metabolic effects, and reduce the likelihood of adverse effects through decreased systemic exposure. In silico physiological modeling is critical to predicting dermal exposure for a therapeutic and assessing the impact of different formulations on transdermal disposition.
Increasing quality and standardization of experimental methods in preclinical testing have created valuable data sets that improve the efficiency and accuracy of preclinical prediction for both pharmacokinetics (PK) and PD. Models of quantitative structure–activity relationships (QSAR), physiologically based pharmacokinetics (PBPK), and PK/PD relationships have also improved efficiency. Founded on a core understanding of biochemistry and physiological interactions of xenobiotics, these in silico methods have the potential to increase the probability of compound success in clinical trials. Integrating machine-learning approaches and new data sets stands to make a fundamental impact on the speed and accuracy of predictions from R&D to approval.
Increasing quality and standardization of experimental methods in preclinical testing have created valuable data sets that improve the efficiency and accuracy of preclinical prediction for both pharmacokinetics (PK) and PD. Models of quantitative structure–activity relationships (QSAR), physiologically based pharmacokinetics (PBPK), and PK/PD relationships have also improved efficiency. Founded on a core understanding of biochemistry and physiological interactions of xenobiotics, these in silico methods have the potential to increase the probability of compound success in clinical trials. Integrating machine-learning approaches and new data sets stands to make a fundamental impact on the speed and accuracy of predictions from R&D to approval.